October 20th, 2018: International Observe The Moon Night

The moon, or supermoon, is seen as it sets over the Martin Luther King Jr. Memorial on Monday, Nov. 14, 2016. A supermoon occurs when the moon’s orbit is closest (perigee) to Earth. Early Monday morning, the moon was the closest it has been to Earth since 1948 and it appeared 30 percent brighter and 14 percent bigger than the average monthly full moon. Photo Credit: (NASA/Aubrey Gemignani)
The moon, or supermoon, is seen as it sets over the Martin Luther King Jr. Memorial on Monday, Nov. 14, 2016. A supermoon occurs when the moon’s orbit is closest (perigee) to Earth. Early Monday morning, the moon was the closest it has been to Earth since 1948 and it appeared 30 percent brighter and 14 percent bigger than the average monthly full moon. Photo Credit: (NASA/Aubrey Gemignani)

Please join us on the evening of Saturday 20 October, 2018 from 7 to 9 PM to participate and celebrate the 2018 edition of International Observe the Moon Night! We will have telescopes set up on the roof (9th floor) of UCLA’s Mathematical Sciences Building. It’s FREE, open to the public, and you’ll be able to observe the Moon (weather permitting).

Specific information and details on International Observe The Moon Night hosted by UCLA’s Institute for Planets and Exoplanets can be found at:

http://planets.ucla.edu/outreach/iotmn2018/

 

UCLA Astronomers Confirm the Very First Existence of an Asteroid Beyond Our Solar System

CAPE CANAVERAL, Fla. — A newly discovered object from another star system that’s passing through ours is shaped like a giant pink fire extinguisher.

That’s the word this week from astronomers who have been observing this first-ever confirmed interstellar visitor.

“I’m surprised by the elongated shape – nobody expected that,” said astronomer David Jewitt of the University of California, Los Angeles, who led the observation team that reported on the characteristics.

Scientists are certain this asteroid or comet originated outside our solar system. First spotted last month by the Pan-STARRS telescope in Hawaii, it will stick around for another few years before departing our sun’s neighborhood.

Jewitt and his international team observed the object for five nights in late October using the Nordic Optical Telescope in the Canary Islands and the Kitt Peak National Observatory near Tucson, Arizona.

At approximately 100 feet by 100 feet by 600 feet (30 meters buy 30 meters by 180 meters), the object has proportions roughly similar to a fire extinguisher — though not nearly as red, Jewitt said Thursday. The slightly red hue — specifically pale pink — and varying brightness are remarkably similar to asteroids in our own solar system, he noted.

Astronomer Jayadev Rajagopal said in an email that it was exciting to point the Arizona telescope at such a tiny object “which, for all we know, has been traveling through the vast emptiness of space for millions of years.”

“And then by luck passes close enough for me to be able to see it that night!”

The object is so faint and so fast — it’s zooming through the solar system at 40,000 mph (64,000 kph) — it’s unlikely amateur astronomers will see it.

In a paper to the Astrophysical Journal Letters, the scientists report that our solar system could be packed with 10,000 such interstellar travelers at any given time. It takes 10 years to cross our solar system, providing plenty of future viewing opportunities, the scientists said.

Trillions of objects from other star systems could have passed our way over the eons, according to Jewitt.

It suggests our solar system ejected its own share of asteroids and comets as the large outer planets — Jupiter, Saturn, Neptune — formed.

Why did it take so long to nail the first interstellar wanderer?

“Space is big and our eyes are weak,” Jewitt explained via email.

Anticipating more such discoveries, the International Astronomical Union already has approved a new designation for cosmic interlopers. They get an “I” for interstellar in their string of letters and numbers. The group also has approved a name for this object: Oumuamua (OH’-moo-ah-moo-ah) which in Hawaiian means a messenger from afar arriving first.

The Scientific Paper is available HERE: https://arxiv.org/pdf/1711.05687.pdf

And you can read more HERE: https://www.nytimes.com/aponline/2017/11/16/science/ap-us-sci-interstellar-visitor.html

As well as HERE: https://www.noao.edu/news/2017/pr1706.php

Exploring Your Universe 2017!

Color Logo - Large

This year’s Exploring Your Universe (EYU) event at UCLA will be held on Sunday, November 5th, 2017.  Exploring Your Universe is an annual event held on the UCLA campus that includes science exhibitions, hands-on activities, demonstrations and experiments.  The event is free, open to the public, and promises an exciting time and a great learning experience for kids and adults alike.

EYU 2017 will be held in UCLA’s Court of Sciences (located in South Campus) from 12PM-5PM. Nighttime activities will take place from 5PM-8PM (weather permitting). Parking is available in Parking Structure #2 but expected to sell out so please be sure to arrive early.

To read more about previous years’ EYU events and other iPLEX outreach events, please visit our Exploring Your Universe page and stay tuned for more updates!

Be sure to follow @UCLAiPLEX (Twitter, Instagram), uclaiplex.tumblr.com (Tumblr) and @eyu_ucla (Twitter)

NASA’s Hubble Observes the Farthest Active Inbound Comet Yet Seen

UCLA’s Professor David Jewitt has most recently been involved in using NASA’s Hubble Space Telescope to image the farthest active inbound comet yet seen.

The Comet that Came in from the Cold

A solitary frozen traveler has been journeying for millions of years toward the heart of our planetary system. The wayward vagabond, a city-sized snowball of ice and dust called a comet, was gravitationally kicked out of the Oort Cloud, its frigid home at the outskirts of the solar system. This region is a vast comet storehouse, composed of icy leftover building blocks from the construction of the planets 4.6 billion years ago.

The comet is so small, faint, and far away that it eluded detection. Finally, in May 2017, astronomers using the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) in Hawaii spotted the solitary intruder at a whopping 1.5 billion miles away – between the orbits of Saturn and Uranus. The Hubble Space Telescope was enlisted to take close-up views of the comet, called C/2017 K2 PANSTARRS (K2).

The comet is record-breaking because it is already becoming active under the feeble glow of the distant Sun. Astronomers have never seen an active inbound comet this far out, where sunlight is merely 1/225th its brightness as seen from Earth. Temperatures, correspondingly, are at a minus 440 degrees Fahrenheit. Even at such bone-chilling temperatures, a mix of ancient ices on the surface – oxygen, nitrogen, carbon dioxide, and carbon monoxide – is beginning to sublimate and shed as dust. This material balloons into a vast 80,000-mile-wide halo of dust, called a coma, enveloping the solid nucleus.

Astronomers will continue to study K2 as it travels into the inner solar system, making its closest approach to the Sun in 2022.

Read more about Comet C/2017 K2 HERE

STSCI-H-p1740a-f-1000x1000

 

 

21 August 2017: The Great UCLA Eclipse

Eclipse2017_USA

Be sure to join us on Monday the 21st of August 2017 from 9:30AM to 11:30AM for ‘The Great UCLA Eclipse’ at UCLA’s Court of Sciences. A partial Solar Eclipse (~60 percent coverage) will be visible at UCLA and we would like to showcase exceptional research and our collaboration between Earth, Planetary, and Space Sciences, Astronomy Live! and The Optical Society (UCLA Chapter).

Solar telescopes will be set up (weather permitting) for you to get to safely see this eclipse. FREE, FUN and open to the public! 300 Solar Eclipse glasses will be given away, first come, first served to the public as well!

Stay tuned to this page for more details, and be sure to use hashtag #UCLAeclipse on your social media!

Local times for eclipse in Los Angeles on Monday, August 21, 2017

Event Time in Los Angeles Direction Altitude Comments
Partial Eclipse begins Aug 21 at 9:05:42 am 98°East 33.4° The Moon touches the Sun’s edge.
Maximum Eclipse Aug 21 at 10:21:10 am 113°East-southeast 48.4° Moon is closest to the center of the Sun.
Partial Eclipse ends Aug 21 at 11:44:44 am 140°Southeast 62.5° The Moon leaves the Sun’s edge.
Times are local for Los Angeles (PDT – Pacific Daylight Time).

 

echo1

 

Image Credit: GreatAmericanEclipse.com

Media Contacts:

Emmanuel Masongsong: emasongsong@igpp.ucla.edu (EPSS)
Xinnan Du: xinnandu@gmail.com (Astronomy Live!)
Jacky Chan: jckchan@ucla.edu (Optical Society of America)
Dr. Marco Velli: mvelli@ucla.edu (Parker Solar Probe Observatory Scientist)
Dr. Vassilis Angelopoulos: vassilis@ucla.edu (Principal Investigator of NASA’s Electron Losses and Fields Investigation [ELFIN])
Dr. Ed Young: eyoung@epss.ucla.edu (Professor of Cosmochemistry)
Dr. Jean-Luc Margot: jlm@epss.ucla.edu (Professor and Chair of UCLA’s EPSS Department)
Also, be sure to follow @UCLAiPLEX and @UCLAEPSS on Social Media!

UCLA EPSS Prof. Margaret Kivelson Wins American Astronomical Society’s 2017 Gerard P. Kuiper Prize

UCLA EPSS Professor Margaret Kivelson Wins American Astronomical Society’s 2017 Gerard P. Kuiper Prize
UCLA EPSS Professor Margaret Kivelson has won the 2017 Gerard P. Kuiper Prize, the highest award given to planetary scientists from the American Astronomical Society’s Division For Planetary Sciences. The Kuiper Prize is given for Outstanding Contributions to Planetary Science.
From the AAS news release:

“The Gerard P. Kuiper Prize for outstanding contributions to planetary science goes to Margaret G. Kivelson (University of California, Los Angeles, and University of Michigan) for her work studying Jupiter’s magnetospheric plasmas to understand the interiors of planets and their moons. Kivelson’s pioneering discoveries of an ocean inside Jupiter’s moon Europa and a magnetic field generated by neighboring Ganymede showed us that these icy bodies are not inert but dynamic worlds. Her insights have spurred us to recognize that habitability need not depend on proximity to the Sun in the traditional habitable zone. As a direct result of Kivelson’s advancements, we now recognize that the ocean worlds of the outer solar system may represent our best chances for discovering life beyond Earth.”

Congratulations Professor Kivelson!
Margaret+Kivelson+photo_5ebacca1-0ab1-4e0b-8df6-4df3fa546dd7-prv

Emmanuel Masongsong’s Artwork Makes The Cover of Journal of Geophysical Research

UCLA Staff and Researcher, Emmanuel V. Masongsong’s artwork has made the cover of the Journal of Geophysical Research (JGR) which is a major AGU publication journal.
UCLA EPSS research findings are featured on the February 2017 cover of the Journal of Geophysical Research: Space Physics. The study describes the properties of a newly discovered form of the northern lights, called throat aurora, on the dayside of Earth facing the sun (upward, out of frame). Using observations on the ground and in interplanetary space, the aurora are postulated to form through a novel combination of plasma flows inside and outside of the Earth’s magnetic field (the magnetosphere). Under certain conditions, solar wind interactions at the bow shock (~2 Earth widths upstream of the magnetosphere) can produce fast jets of hot plasma that perturb the outer boundary of the magnetosphere, as shown by previous UCLA EPSS studies. Sometimes cooler plasma “fingers” within Earth’s magnetosphere extend outward towards this boundary. The interaction of these two plasmas manifests as throat aurora, with radial spokes uniquely aligned along the north-south longitudinal axis.
MasongsongJGRcover

Picture caption: “Observational properties of a newly discovered auroral form near local noon, called throat aurora, revealing combined contributions for its generation from inside and outside of the magnetosphere. The image gives a schematic summarizing the physical process leading to the formation of throat aurora. From Han et al. [pp. 1853–1870, doi: 10.1002/2016JA023394 ]. Image credit: E. Masongsong, H. Hietala (UCLA EPSS), D.-S. Han (Polar Research Institute of China).”
[pp. 1853–1870, doi: 10.1002/2016JA023394].

UCLA Professor Jonathan Arnou In The News

Experiment resolves mystery about wind flows on Jupiter

Using a spinning table and a massive garbage can, UCLA geophysicist leads team in simulating the planet’s atmosphere

Jupiter+south+pole,+credit,+Jonathan+Aurnou_mid

Views Jupiter’s south pole (upper left and lower right) and images from the lab experiment to re-create the planet’s winds (upper right and lower left). Image Credit: Jonathan Arnou

Jupiter’s colorful, swirling winds known as “jets” have long puzzled astronomers.

One mystery has been whether the jets exist only in the planet’s upper atmosphere — much like the Earth’s own jet streams — or whether they plunge into Jupiter’s gaseous interior. If the latter is true, it could reveal clues about the planet’s interior structure and internal dynamics.

Now, UCLA geophysicist Jonathan Aurnou and collaborators in Marseille, France, have simulated Jupiter’s jets in the laboratory for the first time. Their work demonstrates that the winds likely extend thousands of miles below Jupiter’s visible atmosphere.

This research is published online today in Nature Physics.

“We can make these features in a computer, but we couldn’t make them happen in a lab,” said Aurnou, a UCLA professor of Earth, planetary and space sciences, who has spent the past decade studying computer models of swirling winds. “If we have a theoretical understanding of a system, we should be able to create an analog model.”

The challenge to re-creating swirling winds in the lab was building a model of a planet with three key attributes believed to be necessary for jets to form: rapid rotation, turbulence and a “curvature effect” that mimics the spherical shape of a planet. Previous attempts to create jets in a lab often failed because researchers couldn’t spin their models fast enough or create enough turbulence, Aurnou said.

The breakthrough for Aurnou’s team was a new piece of laboratory equipment. The researchers used a table built on air bearings that can spin at 120 revolutions per minute and support a load of up to 1,000 kilograms (about 2,200 pounds), meaning that it could spin a large tank of fluid at high speed in a way that mimics Jupiter’s rapid rotation.

The scientists filled an industrial-sized garbage can with 400 liters (about 105 gallons) of water and placed it on the table. When the container spun, water was thrown against its sides, forming a parabola that approximated the curved surface of Jupiter.

“The faster it went, the better we mimicked the massively strong effects of rotation and curvature that exists on planets,” Aurnou said. But the team found that 75 revolutions per minute was a practical limit: fast enough to force the liquid into a strongly curved shape but slow enough to keep water from spilling out.

While the can was spinning, scientists used a pump below its false floor to circulate water through a series of inlet and outlet holes, which created turbulence — one of the three critical conditions for the experiment. That turbulent energy was channeled into making jets, and within minutes the water flow had changed to six concentric flows moving in alternating directions.

“This is the first time that anyone has demonstrated that strong jets that look like those on Jupiter can develop in a real fluid,” Aurnou said.

The researchers inferred that the jets were deep because they could see them on the surface of the water, even though they had injected turbulence at the bottom.

The researchers are looking forward to testing their predictions with real data from Jupiter, and they won’t have to wait long: NASA’s Juno space probe is orbiting Jupiter right now, collecting data about its atmosphere, magnetic field and interior. Initial results from the Juno mission were presented at the American Geophysical Union meeting in December in San Francisco, and Aurnou was there.

“The Juno data from the very first flyby of Jupiter showed that structures of ammonia gas extended over 60 miles into Jupiter’s interior, which was a big shock to the Juno science team,” Aurnou said. “UCLA researchers will be playing an important role in explaining the data.”

This year, Aurnou and his team will use supercomputers at Argonne National Laboratory in Argonne, Illinois, to simulate the dynamics of Jupiter’s interior and atmosphere. They’ll also continue their work at the laboratory in Marseilles to make the spinning table simulation more complex and more realistic.

One goal is to add a thin, stable layer of fluid on top of the spinning water, which would function like the thin outer layer of Jupiter’s atmosphere that’s responsible for the planet’s weather. The researchers believe this will help them simulate features like Jupiter’s famous Great Red Spot.

The research was funded by the National Science Foundation Geophysics Program, the French Agence Nationale pour la Recherche and the Aix-Marseille University Foundation.

The full article appeared in the UCLA Newsroom here: http://newsroom.ucla.edu/releases/ucla-geophysicist-models-jupiters-swirling-winds

 

 

 

 

UCLA Meteorite Hunter Jason Utas In Finnish Magazine Tähdet Ja Avaruus

UCLA Meteorite Hunter and Graduate Student Jason Utas Appears In Finnish Magazine Tähdet Ja Avaruus
utas

Known for being a meteorite hunter extraordinaire, UCLA Earth, Planetary, and Space Sciences Graduate Student Jason Utas has appeared in the Finnish magazine Tähdet Ja Avaruus discussing meteorites. You may find some of the samples he has recovered or has put up at the UCLA Meteorite Museum which is FREE and open to the public in UCLA Geology Building, Room 3-697 open M-F 9AM-4PM and Sunday 1PM-4PM

You can download the article here: ta0716_meteoriitti

The Disintegration of Comet 332P/Ikeya-Muramaki

ikeyamurakamibreakup

DATELINE: SEPT. 15, 2016, LOS ANGELES, CA. U.S.A.
UCLA-led astronomers capture best view ever of disintegrating comet

Astronomers have captured the sharpest, most detailed observations of a comet breaking apart 67 million miles from Earth, using NASA’s Hubble Space Telescope. The discovery is published online today in Astrophysical Journal Letters.In a series of images taken over three days in January 2016, Hubble revealed 25 building-size blocks made of a mixture of ice and dust that are drifting away from the comet at a leisurely pace, about the walking speed of an adult, said David Jewitt, a professor in the UCLA Department of Earth, Planetary and Space Sciences and the UCLA Department of Physics and Astronomy, who led the research team.The observations also suggest that the roughly 4.5-billion-year-old comet, named 332P/Ikeya- Murakami, or Comet 332P, may be spinning so fast that material is ejected from its surface. The resulting debris is now scattered along a 3,000-mile-long trail, larger than the width of the continental U.S.These observations provide insight into the volatile behavior of comets as they approach the sun and begin to vaporize, unleashing powerful forces.“We know that comets sometimes disintegrate, but we don’t know much about why or how,” Jewitt said. “The trouble is that it happens quickly and without warning, so we don’t have much chance to get useful data. With Hubble’s fantastic resolution, not only do we see really tiny, faint bits of the comet, but we can watch them change from day to day. That has allowed us to make the best measurements ever obtained on such an object.”The three-day observations show that the comet shards brighten and dim as icy patches on their surfaces rotate into and out of sunlight. Their shapes change too as they break apart. The icy relics comprise about four percent of the parent comet and range in size from roughly 65 feet wide to 200 feet wide. They are separating at only a few miles per hour as they orbit the sun at more than 50,000 miles per hour.

The Hubble images show that the parent comet changes brightness frequently, completing a rotation every two to four hours. A visitor to the comet would see the sun rise and set in as little as an hour, Jewitt said.

The comet is much smaller than astronomers thought, measuring only 1,600 feet across, about the length of five football fields.

Comet 332P was discovered in November 2010, after it surged in brightness and was spotted by two Japanese amateur astronomers, Kaoru Ikeya and Shigeki Murakami.

Based on the Hubble data, the research team suggests that sunlight heated up the comet’s surface, causing it to erupt jets of dust and gas. Because the nucleus is so small, these jets act like rocket engines, spinning up the comet’s rotation, Jewitt said. The faster spin rate loosened chunks of material, which are drifting off into space. The research team calculated that the comet probably shed material over a period of months, between October and December 2015.

Jewitt suggests that some of the ejected pieces have themselves fallen to bits in a kind of cascading fragmentation. “Our analysis shows that the smaller fragments are not as abundant as one might expect based on the number of bigger chunks,” he said. “This is suggestive that they’re being depleted even in the few months since they were launched from the primary body. We think these little guys have a short lifetime.”

Hubble’s sharp vision also spied a chunk of material close to the comet, which may be the first salvo of another outburst. The remnant from still another flare-up, which may have occurred in 2012, is also visible. The fragment may be as large as Comet 332P, suggesting the comet split in two. But the icy remnant wasn’t spotted until Dec. 31, 2015, by the Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) telescope in Hawaii.

That discovery prompted Jewitt and colleagues to request Hubble Space Telescope time to study the comet in detail. Around the same time, astronomers worldwide began to notice a “cloud of nebulosity” near the comet, which Hubble later resolved into the 25 pieces.

“In the past, astronomers thought that comets die when they are warmed by sunlight, causing their ices to simply vaporize away,” Jewitt said. Either nothing would be left over or there would be a dead hulk of material where an active comet used to be. But it’s starting to look like fragmentation may be more important. In comet 332P we may be seeing a comet fragmenting itself into oblivion.”

The researchers estimate that comet 332P contains enough mass to endure another 25 outbursts. “If the comet has an episode every six years, the equivalent of one orbit around the sun, then it will be gone in 150 years,” Jewitt said. “It’s just the blink of an eye, astronomically speaking. The trip to the inner solar system has doomed it.”

The icy visitor hails from the Kuiper belt, a vast swarm of objects at the outskirts of our solar system. These icy relics are the leftover building blocks from our solar system’s construction. After nearly 4.5 billion years in this icy deep freeze, chaotic gravitational perturbations from Neptune kicked comet 332P out of the Kuiper belt, Jewitt said. As the comet traveled across the

solar system, it was deflected by the planets, like a ball bouncing around in a pinball machine, until Jupiter’s gravity set its current orbit, he said.

Jewitt estimates that a comet from the Kuiper belt gets tossed into the inner solar system every 40 to 100 years.

Co-authors include Harold Weaver, Jr., research professor at the Johns Hopkins University Applied Physics Laboratory.